答 案:D
解 析:
?
3、設(shè)函數(shù),則f(x+1)=()
- A:x2+2x+1
- B:x2+2x
- C:x2+1
- D:x2
答 案:B
解 析:
4、已知直線l:3x-2y-5=0,圓C:,則C上到l的距離為1的點(diǎn)共有()
- A:1個(gè)
- B:2個(gè)
- C:3個(gè)
- D:4個(gè)
答 案:D
解 析:由題可知圓的圓心為(1,-1),半徑為2 ,圓心到直線的距離為,即直線過(guò)圓心,因此圓C上到直線的距離為1的點(diǎn)共有4個(gè).
主觀題
1、已知a,b,c成等差數(shù)列,a,b,c+1成等比數(shù)列.若b=6,求a和c.
答 案:由已知得解得
2、在△ABC中,B=120°,BC=4,△ABC的面積為,求AC.
答 案:由△ABC的面積為得所以AB =4.因此所以
3、在正四棱柱ABCD-A'B'C'D'中,
(Ⅰ)寫出向量關(guān)于基底{a,b,c}的分解式
(Ⅱ)求證:
(Ⅲ)求證:
?
答 案:(Ⅰ)由題意知(如圖所示)
(Ⅱ)
(Ⅲ)
由已知,a,c是正四棱柱的棱,a,b,c兩兩垂直
?
4、某工廠每月生產(chǎn)x臺(tái)游戲機(jī)的收入為R(x)=+130x-206(百元),成本函數(shù)為C(x)=50x+100(百元),當(dāng)每月生產(chǎn)多少臺(tái)時(shí),獲利潤(rùn)最大?最大利潤(rùn)為多少?
?
答 案:利潤(rùn) =收入-成本, L(x)=R(x)-C(x)=+130x-206-(50x+100)=+80x-306
法一:用二次函數(shù)當(dāng)a<0時(shí)有最大值
是開口向下的拋物線,有最大值
法二:用導(dǎo)數(shù)來(lái)求解
因?yàn)閤=90是函數(shù)在定義域內(nèi)唯一駐點(diǎn)
所以x=90是函數(shù)的極大值點(diǎn),也是函數(shù)的最大值點(diǎn),其最大值為L(zhǎng)(90)=3294
?
填空題
1、橢圓的中心在原點(diǎn),一個(gè)頂點(diǎn)和一個(gè)焦點(diǎn)分別是直線x+3y-6與兩坐標(biāo)軸的交點(diǎn),則此橢圓的標(biāo)準(zhǔn)方程為()
?
答 案:
解 析:原直線方程可化為交點(diǎn)(6,0),(0,2). 當(dāng)點(diǎn)(6,0)是橢圓一個(gè)焦點(diǎn),點(diǎn)(0,2) 是橢圓一個(gè)頂點(diǎn)時(shí),c=6,b=2,當(dāng)點(diǎn)(0,2) 是橢圓一個(gè)焦點(diǎn),(6,0) 是橢圓一個(gè)頂點(diǎn)時(shí),c=2,b-6,
2、函數(shù)的定義域是()
答 案:
解 析:所以函數(shù)的定義域是