2023年成考高起點每日一練《數(shù)學(xué)(文史)》9月4日專為備考2023年數(shù)學(xué)(文史)考生準(zhǔn)備,幫助考生通過每日堅持練習(xí),逐步提升考試成績。
單選題
1、下列函數(shù)中,為減函數(shù)的是()
- A:y=cosx
- B:
- C:
- D:
答 案:C
解 析:由對數(shù)函數(shù)的性質(zhì)可知,當(dāng)?shù)讛?shù)大于0小于1時,在定義域內(nèi),對數(shù)函數(shù)為減函數(shù),故選C選項.
2、袋中有6個球,其中4個紅球,2個白球,從中隨機取出2個球,則這2個球都為紅球的概率為()
- A:
- B:
- C:
- D:
答 案:C
解 析:兩個球都是紅球的概率為
3、在△ABC中,三邊為a、b、c,∠B=60°,則的值是() ?
- A:大于零
- B:小于零
- C:等于零
- D:不能確定
答 案:C
解 析:由已知用余弦定理得: ?
4、函數(shù)的圖像與直線y=4的交點坐標(biāo)為()
- A:(0,4)
- B:(4,64)
- C:(1,4)
- D:(4,16)
答 案:C
解 析:令y=4x=4,解得x=1,故所求交點為(1,4).
主觀題
1、在△ABC中,B=120°,C=30°,BC=4,求△ABC的面積.
答 案:因為A= 180°-B-C=30°,所以AB = BC=4.因此△ABC的面積
2、設(shè)函數(shù)
(I)求f'(2);
(II)求f(x)在區(qū)間[一1,2]的最大值與最小值.
答 案:(I)因為,所以f'(2)=3×22-4=8.(II)因為x<-1,f(-1)=3.f(2)=0.
所以f(x)在區(qū)間[一1,2]的最大值為3,最小值為
3、在△ABC中,AB=2,BC=3,B=60°,求AC及△ABC的面積
答 案:
4、設(shè)函數(shù)f(x)且f'(-1)=-36 (Ⅰ)求m (Ⅱ)求f(x)的單調(diào)區(qū)間
答 案:(Ⅰ)由已知得f'= 又由f'(-1)=-36得
6-6m-36=-36
故m=1.
(Ⅱ)由(Ⅰ)得f'(x)=
令f'(x)=0,解得
當(dāng)x<-3時,f'(x)>0;
當(dāng)-3
填空題
1、函數(shù)f(x)=在區(qū)間[-3,3]上的最大值為() ?
答 案:4
解 析:這題考的是高次函數(shù)的最值問題,可用導(dǎo)數(shù)來求函數(shù)在區(qū)間[-3,3]上的最值。 列出表格 由上表可知函數(shù)在[-3,3]上,在x=1點處有最大值為4. ?
2、函數(shù)y=的定義域是()
答 案:[1,+∞)
解 析:要是函數(shù)y=有意義,需使 所以函數(shù)的定義域為{x|x≥1}=[1,+∞) ?