2023年成考高起點(diǎn)每日一練《數(shù)學(xué)(文史)》9月3日專為備考2023年數(shù)學(xué)(文史)考生準(zhǔn)備,幫助考生通過每日堅(jiān)持練習(xí),逐步提升考試成績。
單選題
1、設(shè)甲:;乙:.則()
- A:甲是乙的必要條件但不是充分條件
- B:甲是乙的充分條件但不是必要條件
- C:甲是乙的充要條件
- D:甲既不是乙的充分條件也不是乙的必要條件
答 案:A
解 析:三角形相似不一定全等,但三角形全等一定相似,因此,甲是乙的必要條件但不是充分條件.
2、已知點(diǎn)M(-2,5),N(4,2),點(diǎn)P在上,且=1:2,則點(diǎn)P的坐標(biāo)為()
- A:
- B:(0,4)
- C:(8,2)
- D:(2,1)
答 案:B
解 析:由題意得: ?
3、函數(shù)的最小正周期為
- A:
- B:
- C:
- D:
答 案:B
解 析:由正切函數(shù)的最小正周期得的最小正周期為
4、已知,則sin2α=()
- A:
- B:
- C:
- D:
答 案:D
解 析:兩邊平方得,故
主觀題
1、在△ABC中,AB=2,BC=3,B=60°,求AC及△ABC的面積
答 案:
2、已知直線l的斜率為1,l過拋物線C:的焦點(diǎn),且與C交于A,B兩點(diǎn).
(I)求l與C的準(zhǔn)線的交點(diǎn)坐標(biāo);
(II)求|AB|.
答 案:(I)C的焦點(diǎn)為,準(zhǔn)線為由題意得l的方程為因此l與C的準(zhǔn)線的交點(diǎn)坐標(biāo)為(II)由得設(shè)A(x1,y1).B(x2,y2),則因此
3、設(shè)函數(shù)f(x)且f'(-1)=-36 (Ⅰ)求m (Ⅱ)求f(x)的單調(diào)區(qū)間
答 案:(Ⅰ)由已知得f'= 又由f'(-1)=-36得
6-6m-36=-36
故m=1.
(Ⅱ)由(Ⅰ)得f'(x)=
令f'(x)=0,解得
當(dāng)x<-3時(shí),f'(x)>0;
當(dāng)-3
4、設(shè)橢圓的中心是坐標(biāo)原點(diǎn),長軸在x軸上,離心率已知點(diǎn)P到圓上的點(diǎn)的最遠(yuǎn)距離是求橢圓的方程 ?
答 案:由題意,設(shè)橢圓方程為 由 設(shè)P點(diǎn)到橢圓上任一點(diǎn)的距離為 d, 則在y=-b時(shí),最大,即d也最大。 ?
填空題
1、函數(shù)f(x)=在區(qū)間[-3,3]上的最大值為() ?
答 案:4
解 析:這題考的是高次函數(shù)的最值問題,可用導(dǎo)數(shù)來求函數(shù)在區(qū)間[-3,3]上的最值。 列出表格 由上表可知函數(shù)在[-3,3]上,在x=1點(diǎn)處有最大值為4. ?
2、設(shè)則
答 案:-1
解 析: ?