133職教網(wǎng):包含各種考證等職教知識(shí)

網(wǎng)站首頁(yè)

您的位置:首頁(yè) 學(xué)歷類成考高起點(diǎn) → 2023年08月15日成考高起點(diǎn)每日一練《數(shù)學(xué)(文史)》

2023年08月15日成考高起點(diǎn)每日一練《數(shù)學(xué)(文史)》

2023/08/15 作者:匿名 來(lái)源:本站整理

2023年成考高起點(diǎn)每日一練《數(shù)學(xué)(文史)》8月15日專為備考2023年數(shù)學(xué)(文史)考生準(zhǔn)備,幫助考生通過(guò)每日?qǐng)?jiān)持練習(xí),逐步提升考試成績(jī)。

單選題

1、已知點(diǎn)M(-2,5),N(4,2),點(diǎn)P在上,且=1:2,則點(diǎn)P的坐標(biāo)為()

  • A:
  • B:(0,4)
  • C:(8,2)
  • D:(2,1)

答 案:B

解 析:由題意得: ?

2、用1,2,3,4一組成沒(méi)有重復(fù)數(shù)字的三位數(shù),其中偶數(shù)共有()

  • A:24個(gè)
  • B:12個(gè)
  • C:6個(gè)
  • D:3個(gè)

答 案:B

解 析:若三位數(shù)為偶數(shù),個(gè)位數(shù)只能從2,4中選一個(gè),故沒(méi)有重復(fù)數(shù)字的偶數(shù)三位數(shù)為

3、已知直線l:3x一2y-5=0,圓C:,則C上到l的距離為1的點(diǎn)共有()

  • A:1個(gè)
  • B:2個(gè)
  • C:3個(gè)
  • D:4個(gè)

答 案:D

解 析:由題可知圓的圓心為(1.-1),半徑為2,圓心到直線的距離為,即直線過(guò)圓心,因此圓C上到直線的距離為1的點(diǎn)共有4個(gè).

4、函數(shù)y=x2+1(x>0)的圖像在()

  • A:第一象限
  • B:第二象限
  • C:第三象限
  • D:第四象限

答 案:A

解 析:當(dāng)x>0時(shí),函數(shù)y=x2+1>0,因此函數(shù)的圖像在第一象限.

主觀題

1、已知等差數(shù)列前n項(xiàng)和 (Ⅰ)求通項(xiàng)的表達(dá)式 (Ⅱ)求的值 ?

答 案:(Ⅰ)當(dāng)n=1時(shí),由 也滿足上式,故=1-4n(n≥1) (Ⅱ)由于數(shù)列是首項(xiàng)為公差為d=-4的等差數(shù)列,所以是首項(xiàng)為公差為d=-8,項(xiàng)數(shù)為13的等差數(shù)列,于是由等差數(shù)列前n項(xiàng)和公式得: ?

2、設(shè)函數(shù)f(x)且f'(-1)=-36 (Ⅰ)求m (Ⅱ)求f(x)的單調(diào)區(qū)間

答 案:(Ⅰ)由已知得f'= 又由f'(-1)=-36得 6-6m-36=-36 故m=1. (Ⅱ)由(Ⅰ)得f'(x)= 令f'(x)=0,解得 當(dāng)x<-3時(shí),f'(x)>0; 當(dāng)-32時(shí),f'(x)>0; 故f(x)的單調(diào)遞減區(qū)間為(-3,2),f(x)的單調(diào)遞增區(qū)間為(-∞,-3),(2,+∞) ?

3、每畝地種果樹(shù)20棵時(shí),每棵果樹(shù)收入90元,如果每畝增種一棵,每棵果樹(shù)收入就下降3元,求使總收入最大的種植棵數(shù). ?

答 案:設(shè)每畝增種x棵,總收入味y元,則每畝種樹(shù)(20+x)棵,由題意知增種x棵后每棵收入為(60-3x) 則有y=(90-3x)(20+x) 整理得y=+30x+1800 配方得y=+1875 當(dāng)x=5時(shí),y有最大值,所以每畝地最多種25棵

4、已知直線l的斜率為1,l過(guò)拋物線C:的焦點(diǎn),且與C交于A,B兩點(diǎn).
(I)求l與C的準(zhǔn)線的交點(diǎn)坐標(biāo);
(II)求|AB|.

答 案:(I)C的焦點(diǎn)為,準(zhǔn)線為由題意得l的方程為因此l與C的準(zhǔn)線的交點(diǎn)坐標(biāo)為(II)由設(shè)A(x1,y1).B(x2,y2),則因此

填空題

1、函數(shù)f(x)=在區(qū)間[-3,3]上的最大值為() ?

答 案:4

解 析:這題考的是高次函數(shù)的最值問(wèn)題,可用導(dǎo)數(shù)來(lái)求函數(shù)在區(qū)間[-3,3]上的最值。 列出表格 由上表可知函數(shù)在[-3,3]上,在x=1點(diǎn)處有最大值為4. ?

2、()

答 案:3

解 析:

網(wǎng)友評(píng)論

0
發(fā)表評(píng)論

您的評(píng)論需要經(jīng)過(guò)審核才能顯示

精彩評(píng)論

最新評(píng)論
?