133職教網(wǎng):包含各種考證等職教知識(shí)

網(wǎng)站首頁

您的位置:首頁 學(xué)歷類成考高起點(diǎn) → 2023年08月15日成考高起點(diǎn)每日一練《數(shù)學(xué)(理)》

2023年08月15日成考高起點(diǎn)每日一練《數(shù)學(xué)(理)》

2023/08/15 作者:匿名 來源:本站整理

2023年成考高起點(diǎn)每日一練《數(shù)學(xué)(理)》8月15日專為備考2023年數(shù)學(xué)(理)考生準(zhǔn)備,幫助考生通過每日?qǐng)?jiān)持練習(xí),逐步提升考試成績(jī)。

單選題

1、若()

  • A:
  • B:
  • C:
  • D:

答 案:B

解 析:首先做出單位圓,然后根據(jù)問題的約束條件,利用三角函數(shù)線找出滿足條件的a角取值范圍 ?

2、已知直線l:3x-2y-5=0,圓C:,則C上到l的距離為1的點(diǎn)共有()

  • A:1個(gè)
  • B:2個(gè)
  • C:3個(gè)
  • D:4個(gè)

答 案:D

解 析:由題可知圓的圓心為(1,-1),半徑為2 ,圓心到直線的距離為,即直線過圓心,因此圓C上到直線的距離為1的點(diǎn)共有4個(gè).

3、方程的圖像是下圖中的() ?

  • A:
  • B:
  • C:
  • D:

答 案:D

解 析:本題屬于讀圖題型,在尋求答案時(shí),要著重討論方程的表達(dá)式 ?

4、已知空間向量i,j,k為兩兩垂直的單位向量,向量a=2i+3j+mk,若,則m=()

  • A:-2
  • B:-1
  • C:0
  • D:1

答 案:C

解 析:由題可知向量a=(2,3,m),故,解得m=0.

主觀題

1、已知等差數(shù)列前n項(xiàng)和 (Ⅰ)求這個(gè)數(shù)列的通項(xiàng)公式;(Ⅱ)求數(shù)列第六項(xiàng)到第十項(xiàng)的和

答 案: ?

2、建筑一個(gè)容積為8000,深為6m的長方體蓄水池,池壁每的造價(jià)為15元,池底每的造價(jià)為30元。(I)把總造價(jià)y(元)表示為長x(m)的函數(shù);(Ⅱ)求函數(shù)的定義域 ?

答 案:

3、設(shè)函數(shù)f(x)= (Ⅰ)求f(x)的單調(diào)區(qū)間; (Ⅱ)求 f(x)的極值

答 案:(Ⅰ)函數(shù)的定義域?yàn)?img src="https://img2.meite.com/questions/202303/28642286bee9cc3.png" /> (Ⅱ) ?

4、在正四棱柱ABCD-A'B'C'D'中, (Ⅰ)寫出向量關(guān)于基底{a,b,c}的分解式 (Ⅱ)求證: (Ⅲ)求證: ?

答 案:(Ⅰ)由題意知(如圖所示) (Ⅱ) (Ⅲ) 由已知,a,c是正四棱柱的棱,a,b,c兩兩垂直 ?

填空題

1、lg(tan43°tan45°tan47°)=() ?

答 案:0

解 析:lg(tan43°tan45°tan47°)=lg(tan43°tan45°cot43°)=lgtan45°=lg1=0

2、橢圓的中心在原點(diǎn),一個(gè)頂點(diǎn)和一個(gè)焦點(diǎn)分別是直線x+3y-6與兩坐標(biāo)軸的交點(diǎn),則此橢圓的標(biāo)準(zhǔn)方程為() ?

答 案:

解 析:原直線方程可化為交點(diǎn)(6,0),(0,2). 當(dāng)點(diǎn)(6,0)是橢圓一個(gè)焦點(diǎn),點(diǎn)(0,2) 是橢圓一個(gè)頂點(diǎn)時(shí),c=6,b=2,當(dāng)點(diǎn)(0,2) 是橢圓一個(gè)焦點(diǎn),(6,0) 是橢圓一個(gè)頂點(diǎn)時(shí),c=2,b-6,

網(wǎng)友評(píng)論

0
發(fā)表評(píng)論

您的評(píng)論需要經(jīng)過審核才能顯示

精彩評(píng)論

最新評(píng)論
?