2023年成考高起點每日一練《數(shù)學(xué)(文史)》8月9日專為備考2023年數(shù)學(xué)(文史)考生準(zhǔn)備,幫助考生通過每日堅持練習(xí),逐步提升考試成績。
單選題
1、已知成等差數(shù)列,且為方程的兩個根,則的值為() ?
- A:
- B:
- C:
- D:
答 案:D
解 析:由根與系數(shù)的關(guān)系得由等差數(shù)列的性質(zhì)得
2、已知函數(shù)f(x)的定義域為R,且滿足f(2x)=,則f(x)的反函數(shù)為()
- A:
- B:
- C:
- D:
答 案:B
解 析:令2x=t,則x= ?
3、設(shè)甲:;乙:.則()
- A:甲是乙的必要條件但不是充分條件
- B:甲是乙的充分條件但不是必要條件
- C:甲是乙的充要條件
- D:甲既不是乙的充分條件也不是乙的必要條件
答 案:A
解 析:三角形相似不一定全等,但三角形全等一定相似,因此,甲是乙的必要條件但不是充分條件.
4、設(shè)函數(shù)f(x十1)=2x+2,則f(x)=()
- A:2x-1
- B:2x
- C:2x+1
- D:2x+2
答 案:B
解 析:f(x十1)=2x+2=2(x+1),令t=x+1,故f(t)=2t,把t換成x,因此f(x)=2x.
主觀題
1、已知等差數(shù)列前n項和 (Ⅰ)求通項的表達式 (Ⅱ)求的值 ?
答 案:(Ⅰ)當(dāng)n=1時,由得 也滿足上式,故=1-4n(n≥1) (Ⅱ)由于數(shù)列是首項為公差為d=-4的等差數(shù)列,所以是首項為公差為d=-8,項數(shù)為13的等差數(shù)列,于是由等差數(shù)列前n項和公式得: ?
2、已知直線l的斜率為1,l過拋物線C:的焦點,且與C交于A,B兩點.
(I)求l與C的準(zhǔn)線的交點坐標(biāo);
(II)求|AB|.
答 案:(I)C的焦點為,準(zhǔn)線為由題意得l的方程為因此l與C的準(zhǔn)線的交點坐標(biāo)為(II)由得設(shè)A(x1,y1).B(x2,y2),則因此
3、在△ABC中,B=120°,C=30°,BC=4,求△ABC的面積.
答 案:因為A= 180°-B-C=30°,所以AB = BC=4.因此△ABC的面積
4、在△ABC中,AB=2,BC=3,B=60°,求AC及△ABC的面積
答 案:
填空題
1、函數(shù)f(x)=在區(qū)間[-3,3]上的最大值為() ?
答 案:4
解 析:這題考的是高次函數(shù)的最值問題,可用導(dǎo)數(shù)來求函數(shù)在區(qū)間[-3,3]上的最值。 列出表格 由上表可知函數(shù)在[-3,3]上,在x=1點處有最大值為4. ?
2、函數(shù)的圖像與坐軸的交點共有()個 ?
答 案:2
解 析:當(dāng)x=0,故函數(shù)與y軸交于(0,-1)點;令y=0,則有故函數(shù)與工軸交于(1,0)點,因此函數(shù)與坐標(biāo)軸的交點共有2個