2023年成考高起點每日一練《數(shù)學(xué)(理)》7月12日專為備考2023年數(shù)學(xué)(理)考生準(zhǔn)備,幫助考生通過每日堅持練習(xí),逐步提升考試成績。
單選題
1、已知集合M =(2,3,5,a),N =(1,3,4,b),若M∩N=(1,2,3),則a,b的值為 ?
- A:a=2,b=1
- B:a=1,b=1
- C:a=1,b= 2
- D:a=1,b=5
答 案:C
解 析:M∩N={2,3,5,a} ∩{1,3,4,6} ={1,2,3} 又因為M中無“1”元素,而有“a”元素,只有a=1 而N中無“2”元素,而有“b元素”,只有b=2 ?
2、過點P(2,3)且在兩軸上截距相等的直線方程為() ?
- A:
- B:
- C:x+y=5
- D:
答 案:B
解 析:選項A中,在x、y 軸上截距為 5.但答案不完整 所以選項B中有兩個方程,在x軸上橫截距與y軸上的縱截距都為0,也是相等的 選項C,雖然過點(2,3),實質(zhì)上與選項A相同.選項 D,轉(zhuǎn)化為:答案不完整 ?
3、已知空間向量i,j,k為兩兩垂直的單位向量,向量a=2i+3j+mk,若,則m=()
- A:-2
- B:-1
- C:0
- D:1
答 案:C
解 析:由題可知向量a=(2,3,m),故,解得m=0.
4、已知,則sin2α=()
- A:
- B:
- C:
- D:
答 案:D
解 析:兩邊平方得,故
主觀題
1、已知直線l的斜率為1,l過拋物線C:的焦點,且與C交于A,B兩點.(I)求l與C的準(zhǔn)線的交點坐標(biāo);
(II)求|AB|.
答 案:(I)C的焦點為,準(zhǔn)線為由題意得l的方程為因此l與C的準(zhǔn)線的交點坐標(biāo)為(II)由,得設(shè)A(x1,y1),B(x2,y2),則因此
2、建筑一個容積為8000,深為6m的長方體蓄水池,池壁每的造價為15元,池底每的造價為30元。(I)把總造價y(元)表示為長x(m)的函數(shù);(Ⅱ)求函數(shù)的定義域 ?
答 案:
3、設(shè)函數(shù)f(x)= (Ⅰ)求f(x)的單調(diào)區(qū)間; (Ⅱ)求 f(x)的極值
答 案:(Ⅰ)函數(shù)的定義域為 (Ⅱ) ?
4、已知a,b,c成等差數(shù)列,a,b,c+1成等比數(shù)列.若b=6,求a和c.
答 案:由已知得解得
填空題
1、長方體的長、寬、高分別為2,3,6,則該長方體的對角線長為()
答 案:7
解 析:由題可知長方體的底面的對角線長為,則在由高、底面對角線、長方體的對角線組成的三角形中,長方體的對角線長為
2、橢圓的中心在原點,一個頂點和一個焦點分別是直線x+3y-6與兩坐標(biāo)軸的交點,則此橢圓的標(biāo)準(zhǔn)方程為() ?
答 案:
解 析:原直線方程可化為交點(6,0),(0,2). 當(dāng)點(6,0)是橢圓一個焦點,點(0,2) 是橢圓一個頂點時,c=6,b=2,當(dāng)點(0,2) 是橢圓一個焦點,(6,0) 是橢圓一個頂點時,c=2,b-6,